Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 885
Filtrar
1.
Molecules ; 29(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611720

RESUMEN

Many folding enzymes use separate domains for the binding of substrate proteins and for the catalysis of slow folding reactions such as prolyl isomerization. FKBP12 is a small prolyl isomerase without a chaperone domain. Its folding activity is low, but it could be increased by inserting the chaperone domain from the homolog SlyD of E. coli near the prolyl isomerase active site. We inserted two other chaperone domains into human FKBP12: the chaperone domain of SlpA from E. coli, and the chaperone domain of SlyD from Thermococcus sp. Both stabilized FKBP12 and greatly increased its folding activity. The insertion of these chaperone domains had no influence on the FKBP12 and the chaperone domain structure, as revealed by two crystal structures of the chimeric proteins. The relative domain orientations differ in the two crystal structures, presumably representing snapshots of a more open and a more closed conformation. Together with crystal structures from SlyD-like proteins, they suggest a path for how substrate proteins might be transferred from the chaperone domain to the prolyl isomerase domain.


Asunto(s)
Proteínas de Escherichia coli , Proteína 1A de Unión a Tacrolimus , Humanos , Escherichia coli/genética , Chaperonas Moleculares , Isomerasa de Peptidilprolil/genética , Catálisis
2.
Nat Commun ; 15(1): 40, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167292

RESUMEN

The peptidyl-prolyl cis-trans isomerase Pin1 is a pivotal therapeutic target in cancers, but the regulation of Pin1 protein stability is largely unknown. High Pin1 expression is associated with SUMO1-modified protein hypersumoylation in glioma stem cells (GSCs), but the underlying mechanisms remain elusive. Here we demonstrate that Pin1 is deubiquitinated and stabilized by USP34, which promotes isomerization of the sole SUMO E2 enzyme Ubc9, leading to SUMO1-modified hypersumoylation to support GSC maintenance. Pin1 interacts with USP34, a deubiquitinase with preferential expression and oncogenic function in GSCs. Such interaction is facilitated by Plk1-mediated phosphorylation of Pin1. Disruption of USP34 or inhibition of Plk1 promotes poly-ubiquitination and degradation of Pin1. Furthermore, Pin1 isomerizes Ubc9 to upregulate Ubc9 thioester formation with SUMO1, which requires CDK1-mediated phosphorylation of Ubc9. Combined inhibition of Pin1 and CDK1 with sulfopin and RO3306 most effectively suppresses orthotopic tumor growth. Our findings provide multiple molecular targets to induce Pin1 degradation and suppress hypersumoylation for cancer treatment.


Asunto(s)
Glioma , Isomerasa de Peptidilprolil , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Sumoilación , Isomerismo , Fosforilación , Glioma/genética , Células Madre Neoplásicas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
3.
Mol Cell Proteomics ; 23(2): 100715, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38216124

RESUMEN

Mammalian cells possess intrinsic mechanisms to prevent tumorigenesis upon deleterious mutations, including oncogene-induced senescence (OIS). The molecular mechanisms underlying OIS are, however, complex and remain to be fully characterized. In this study, we analyzed the changes in the nuclear proteome and phosphoproteome of human lung fibroblast IMR90 cells during the progression of OIS induced by oncogenic RASG12V activation. We found that most of the differentially regulated phosphosites during OIS contained prolyl isomerase PIN1 target motifs, suggesting PIN1 is a key regulator of several promyelocytic leukemia nuclear body proteins, specifically regulating several proteins upon oncogenic Ras activation. We showed that PIN1 knockdown promotes cell proliferation, while diminishing the senescence phenotype and hallmarks of senescence, including p21, p16, and p53 with concomitant accumulation of the protein PML and the dysregulation of promyelocytic leukemia nuclear body formation. Collectively, our data demonstrate that PIN1 plays an important role as a tumor suppressor in response to oncogenic ER:RasG12V activation.


Asunto(s)
Isomerasa de Peptidilprolil , Proteoma , Animales , Humanos , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Proteoma/metabolismo , Factores de Transcripción/metabolismo , Fibroblastos/metabolismo , Oncogenes , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Senescencia Celular/fisiología , Mamíferos/metabolismo
4.
Phys Chem Chem Phys ; 26(5): 4643-4656, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251755

RESUMEN

Pin1 (protein interacting with never-in-mitosis akinase-1) is a member of the family of peptidylprolyl cis-trans isomerases (PPIases) that specifically recognize and isomerize substrates containing phosphorylated Ser/Thr-Pro sequences. Pin1 is involved in many cellular processes and plays a key role in the cell cycle, transcriptional regulation, cell metabolism, proliferation and differentiation, and its abnormalities lead to degenerative and neoplastic diseases. Pin1 is highly expressed in human cancers and promotes the development of tumors by activating multiple oncogenes and inactivating multiple tumor suppressor genes, making it an attractive target for cancer therapy. In this study, we investigated the binding mechanism and conformational relationship between benzimidazole Pin1 inhibitors and Pin1 proteins by molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, binding free energy calculations and decomposition, and molecular dynamics simulations. Molecular docking and molecular dynamics simulations disclosed the most likely binding pose of benzimidazoles with the Pin1 protein. The results of 3D-QSAR modeling indicated that electrostatic fields, hydrophobic fields and hydrogen bonding play important roles in the binding process of inhibitors to proteins. The binding free energy calculations and energy decomposition indicated that Lys63, Arg69, Cys113, Leu122, Met130, and Ser154 may be key residues in the binding of benzimidazole-based inhibitors to the Pin1 protein. This study provides an important theoretical basis for the design and optimization of benzimidazole compounds.


Asunto(s)
Bencimidazoles , Simulación de Dinámica Molecular , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA , Simulación del Acoplamiento Molecular , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Unión Proteica
5.
Sci Rep ; 13(1): 17433, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833355

RESUMEN

Penicillium species are an industrially important group of fungi. Cyclophilins are ubiquitous proteins and several members of this family exhibit peptidyl-prolyl cis-trans isomerase (PPIase) activity. We had earlier demonstrated that the salt-induced PPIase activity in a halotolerant strain of P. oxalicum was associated with enhanced expression of a cyclophilin gene, PoxCYP18. Cloning and characterization of PoxCYP18 revealed that its cDNA consists of 522 bp encoding a protein of 173 amino acid residues, with predicted molecular mass and pI values of 18.91 kDa and 8.87, respectively. The recombinant PoxCYP18 can catalyze cis-trans isomerization of peptidyl-prolyl bond with a catalytic efficiency of 1.46 × 107 M-1 s-1 and is inhibited specifically only by cyclosporin A, with an inhibition constant of 5.04 ± 1.13 nM. PoxCYP18 consists of two cysteine residues at positions - 45 and - 170, and loses its activity under oxidizing conditions. Substitution of these residues alone or together by site-directed mutagenesis revealed that the PPIase activity of PoxCYP18 is regulated through a redox mechanism involving the formation of disulfide linkages. Heterologous expression of PoxCYP18 conferred enhanced tolerance to salt stress in transgenic E. coli cells, implying that this protein imparts protection to cellular processes against salt-induced damage.


Asunto(s)
Ciclofilinas , Penicillium , Ciclofilinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Isomerasa de Peptidilprolil/genética , Penicillium/genética , Penicillium/metabolismo , Ciclosporina/farmacología
6.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37894834

RESUMEN

Mutations in the FKBP14 gene encoding the endoplasmic reticulum resident collagen-related proline isomerase FK506 binding protein 22 kDa (FKBP22) result in kyphoscoliotic Ehlers-Danlos Syndrome (EDS), which is characterized by a broad phenotypic outcome. A plausible explanation for this outcome is that FKBP22 participates in the biosynthesis of subsets of collagen types: FKBP22 selectively binds to collagens III, IV, VI, and X, but not to collagens I, II, V, and XI. However, these binding mechanisms have never been explored, and they may underpin EDS subtype heterogeneity. Here, we used collagen Toolkit peptide libraries to investigate binding specificity. We observed that FKBP22 binding was distributed along the collagen helix. Further, it (1) was higher on collagen III than collagen II peptides and it (2) was correlated with a positive peptide charge. These findings begin to elucidate the mechanism by which FKBP22 interacts with collagen.


Asunto(s)
Síndrome de Ehlers-Danlos , Proteínas de Unión a Tacrolimus , Humanos , Proteínas de Unión a Tacrolimus/metabolismo , Colágeno/genética , Isomerasa de Peptidilprolil/genética , Mutación , Síndrome de Ehlers-Danlos/genética
7.
mBio ; 14(5): e0096723, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37584558

RESUMEN

IMPORTANCE: Correct folding of proteins represents a crucial step for their functions. Among the chaperones that control protein folding, the ubiquitous PPIases catalyze the cis/trans-isomerization of peptidyl-prolyl bonds. Only few protein targets of PPIases have been reported in bacteria. To fill this knowledge gap, we performed a large-scale two-hybrid screen to search for targets of the Escherichia coli and Helicobacter pylori SlyD PPIase-metallochaperone. SlyD from both organisms interacts with enzymes (i) containing metal cofactors, (ii) from the central metabolism tricarboxylic acid (TCA) cycle, and (iii) involved in the formation of the essential and ancestral Fe-S cluster cofactor. E. coli and H. pylori ∆slyD mutants present similar phenotypes of diminished susceptibility to antibiotics and to oxidative stress. In H. pylori, measurements of the intracellular ATP content, proton motive force, and activity of TCA cycle proteins suggest that SlyD regulates TCA cycle enzymes by controlling the formation of their indispensable Fe-S clusters.


Asunto(s)
Proteínas de Escherichia coli , Isomerasa de Peptidilprolil , Isomerasa de Peptidilprolil/genética , Escherichia coli , Metalochaperonas/química , Metalochaperonas/metabolismo , Hierro , Pliegue de Proteína , Proteínas de Escherichia coli/metabolismo
8.
Front Cell Infect Microbiol ; 13: 1195063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404723

RESUMEN

Here, we demonstrate that the peptidyl-prolyl cis/trans isomerase Pin1 interacts noncovalently with the hepatitis B virus (HBV) core particle through phosphorylated serine/threonine-proline (pS/TP) motifs in the carboxyl-terminal domain (CTD) but not with particle-defective, dimer-positive mutants of HBc. This suggests that neither dimers nor monomers of HBc are Pin1-binding partners. The 162TP, 164SP, and 172SP motifs within the HBc CTD are important for the Pin1/core particle interaction. Although Pin1 dissociated from core particle upon heat treatment, it was detected as an opened-up core particle, demonstrating that Pin1 binds both to the outside and the inside of the core particle. Although the amino-terminal domain S/TP motifs of HBc are not involved in the interaction, 49SP contributes to core particle stability, and 128TP might be involved in core particle assembly, as shown by the decreased core particle level of S49A mutant through repeated freeze and thaw and low-level assembly of the T128A mutant, respectively. Overexpression of Pin1 increased core particle stability through their interactions, HBV DNA synthesis, and virion secretion without concomitant increases in HBV RNA levels, indicating that Pin1 may be involved in core particle assembly and maturation, thereby promoting the later stages of the HBV life cycle. By contrast, parvulin inhibitors and PIN1 knockdown reduced HBV replication. Since more Pin1 proteins bound to immature core particles than to mature core particles, the interaction appears to depend on the stage of virus replication. Taken together, the data suggest that physical association between Pin1 and phosphorylated core particles may induce structural alterations through isomerization by Pin1, induce dephosphorylation by unidentified host phosphatases, and promote completion of virus life cycle.


Asunto(s)
Virus de la Hepatitis B , Replicación Viral , Virus de la Hepatitis B/genética , Replicación Viral/genética , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Fosforilación
9.
Free Radic Biol Med ; 207: 296-307, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37473874

RESUMEN

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) isomerizes the nearby proline (Pro) residue when it detects phosphorylated serine (Ser) or threonine (Thr) of target proteins, altering their structure, stability, function, and interaction with other proteins. Hypoxia-inducible factor 2α (HIF-2α), a transcription factor that transactivates many oncogenic genes under hypoxic conditions, harbours the pSer/Thr-Pro motif. We found for the first time that Pin1 binds to HIF-2α physically in normoxic as well as hypoxic conditions in human breast cancer cells. The level of ubiquitinated HIF-2α was significantly raised by Pin1 knockdown, while expression of its mRNA transcript was unaffected. In agreement with this observation, the cycloheximide chase assay demonstrated that Pin1 prolonged the stability of HIF-2α. Serine 672, 696, and 790 of HIF-2α were found to undergo phosphorylation. Of these, the main amino acid involved in the Pin1 binding and HIF-2α stabilization was identified as serine 790, located in the nuclear export signal region of HIF-2α. The tissue array with human breast cancer specimens showed elevated expression of HIF-2α as well as Pin1 compared to adjacent normal tissues. Knockdown of Pin1 or HIF-2α diminished breast cancer cell migration and colony formation. In conclusion, Pin1 stabilizes HIF-2α through direct interaction, which contributes to the growth of breast cancer.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Neoplasias de la Mama , Peptidilprolil Isomerasa de Interacción con NIMA , Femenino , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Oxígeno , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Fosforilación , Serina/genética , Serina/metabolismo
10.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240193

RESUMEN

Our previous studies using rodent models have suggested an essential role for Pin1 in the pathogenesis of non-alcoholic steatohepatitis (NASH). In addition, interestingly, serum Pin1 elevation has been reported in NASH patients. However, no studies have as yet examined the Pin1 expression level in human NASH livers. To clarify this issue, we investigated the expression level and subcellular distribution of Pin1 in liver specimens obtained using needle-biopsy samples from patients with NASH and healthy liver donors. Immunostaining using anti-Pin1 antibody revealed the Pin1 expression level to be significantly higher, particularly in nuclei, in the livers of NASH patients than those of healthy donors. In the samples from patients with NASH, the amount of nuclear Pin1 was revealed to be negatively related to serum alanine aminotransferase (ALT), while tendencies to be associated with other serum parameters such as aspartate aminotransferase (AST) and platelet number were noted but did not reach statistical significance. Such unclear results and the lack of a significant relationship might well be attributable to our small number of NASH liver samples (n = 8). Moreover, in vitro, it was shown that addition of free fatty acids to medium induced lipid accumulation in human hepatoma HepG2 and Huh7 cells, accompanied with marked increases in nuclear Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1), in accordance with the aforementioned observations in human NASH livers. In contrast, suppression of Pin1 gene expression using siRNAs attenuated the free fatty acid-induced lipid accumulation in Huh7 cells. Taken together, these observations strongly suggest that increased expression of Pin1, particularly in hepatic nuclei, contributes to the pathogenesis of NASH with lipid accumulation.


Asunto(s)
Carcinoma Hepatocelular , Hipercolesterolemia , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Isomerasa de Peptidilprolil/genética , Ácidos Grasos no Esterificados , Línea Celular
11.
Int J Biol Macromol ; 242(Pt 1): 124653, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141964

RESUMEN

The largest subunit of RNAPII extends as the conserved unstructured heptapeptide consensus repeats Y1S2P3T4S5P6S7 and their posttranslational modification, especially the phosphorylation state at Ser2, Ser5 and Ser7 of CTD recruits different transcription factors involved in transcription. In the current study, fluorescence anisotropy, pull down assay and molecular dynamics simulation studies employed to conclude that peptidyl-prolyl cis/trans-isomerase Rrd1 has strong affinity for unphosphorylated CTD rather than phosphorylated CTD for mRNA transcription. Rrd1 preferentially interacts with unphosphorylated GST-CTD in comparison to hyperphosphorylated GST-CTD in vitro. Fluorescence anisotropy revealed that recombinant Rrd1 prefers to bind unphosphorylated CTD peptide in comparison to phosphorylated CTD peptide. In computational studies, the RMSD of Rrd1-unphosphorylated CTD complex was greater than the RMSD of Rrd1-pCTD complex. During 50 ns MD simulation run Rrd1-pCTD complex get dissociated twice viz. 20 ns to 30 ns and 40 ns to 50 ns, while Rrd1-unpCTD complex remain stable throughout the process. Additionally, the Rrd1-unphosphorylated CTD complexes acquire comparatively higher number of H-bonds, water bridges and hydrophobic interactions occupancy than Rrd1-pCTD complex, concludes that the Rrd1 interacts more strongly with the unphosphorylated CTD than the pCTD.


Asunto(s)
Isomerasa de Peptidilprolil , ARN Polimerasa II , Isomerasa de Peptidilprolil/genética , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Fosforilación , Factores de Transcripción/genética
12.
J Dermatol ; 50(4): 462-471, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37006202

RESUMEN

Atopic dermatitis (AD) is attributable to both a genetic predisposition and environmental factors. Among numerous cytokines involved in the pathogenesis of AD, interleukin-33 (IL-33), reportedly escaping exocytotically in response to a scratch, is abundantly expressed in the skin tissues of patients with AD and is postulated to induce inflammatory and autoimmune responses. In this study, we first demonstrated that peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (Pin1), a unique enzyme which isomerizes the proline residues of target proteins, is abundantly expressed in keratinocytes, and that the areas where it is present in the skin tissues of AD patients became expanded due to hyperkeratosis. Thus, we investigated the effects of Pin1 on the regulation of IL-33 expression using the human keratinocyte cell line HaCaT. Interestingly, silencing of the Pin1 gene or treatment with Pin1 inhibitors dramatically reduced IL-33 expressions in HaCaT cells, although Pin1 overexpression did not elevate it. Subsequently, we showed that Pin1 binds to STAT1 and the nuclear factor-kappaB (NF-κB) subunit p65. Silencing the Pin1 gene with small interfering RNAs significantly reduced the phosphorylation of p65, while no marked effects of Pin1 on the STAT1 pathway were detected. Thus, it is likely that Pin1 contributes to increased expression of IL-33 via the NF-κB subunit p65 in HaCaT cells, at least modestly. Nevertheless, further study is necessary to demonstrate the pathogenic roles of Pin1 and IL-33 in AD development.


Asunto(s)
Dermatitis Atópica , Isomerasa de Peptidilprolil , Humanos , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Células HaCaT/metabolismo , Fosforilación , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo
13.
J Bacteriol ; 205(4): e0002223, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37010421

RESUMEN

The ferric uptake regulator (Fur) protein is the founding member of the FUR superfamily of metalloregulatory proteins that control metal homeostasis in bacteria. FUR proteins regulate metal homeostasis in response to the binding of iron (Fur), zinc (Zur), manganese (Mur), or nickel (Nur). FUR family proteins are generally dimers in solution, but the DNA-bound complex can involve a single dimer, a dimer-of-dimers, or an extended array of bound protein. Elevated FUR levels due to changes in cell physiology increase DNA occupancy and may also kinetically facilitate protein dissociation. Interactions between FUR proteins and other regulators are commonplace, often including cooperative and competitive DNA-binding interactions within the regulatory region. Further, there are many emerging examples of allosteric regulators that interact directly with FUR family proteins. Here, we focus on newly uncovered examples of allosteric regulation by diverse Fur antagonists (Escherichia coli YdiV/SlyD, Salmonella enterica EIIANtr, Vibrio parahaemolyticus FcrX, Acinetobacter baumannii BlsA, Bacillus subtilis YlaN, and Pseudomonas aeruginosa PacT) as well as one Zur antagonist (Mycobacterium bovis CmtR). Small molecules and metal complexes may also serve as regulatory ligands, with examples including heme binding to Bradyrhizobium japonicum Irr and 2-oxoglutarate binding to Anabaena FurA. How these protein-protein and protein-ligand interactions act in conjunction with regulatory metal ions to facilitate signal integration is an active area of investigation.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Proteínas Bacterianas/metabolismo , Proteínas Represoras/genética , Metales/metabolismo , Hierro/metabolismo , ADN/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Isomerasa de Peptidilprolil/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Portadoras/genética
14.
Braz J Otorhinolaryngol ; 89(3): 383-392, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37105032

RESUMEN

OBJECTIVE: This study aimed to investigate the molecular mechanism of miR-150-5p regulating the malignant biological behavior of Human Epidermoid cancer cell (HEp-2) by targeting peptidyl-prolyl cis/trans isomerase NIMA-Interacting-1 (PIN1). METHODS: Firstly, qRT-PCR and Western blot were adopted to detect the expression levels of miR-150-5p and PIN1 in cancer tissue and paracancerous tissues of patients with LSCC, and those in human bronchial epithelial cells (16 HBE) and HEp-2. Next, the targeted relationship between miR-150-5p and PIN1 was assessed by bioinformatics website and dual-luciferase reporter assay, followed by their correlation analysis. Besides, after interfering with miR-150-5p or PIN1 expression in HEp-2 cells, CCK-8, cell colony formation assay, and transwell assay were utilized to detect the proliferation, viability, and invasion of cells, respectively. Subsequently, the protein levels of MMP-2, MMP-9, and EMT-related proteins in HEp-2 cells were checked by Western blot. RESULTS: Expression of miR-150-5p was down-regulated in LSCC tissues and HEp-2 cells. Moreover, miR-150-5p suppressed proliferation and invasion of HEp-2 cells, affected protein expression related to MMP and EMT, thereby inhibiting development of cancer. The expression of PIN1 was significantly increased in cancer tissues and HEp-2 cells, and there was a targeted relationship and negative correlation between miR-150-5p and PIN1 in cancer tissue. However, overexpression of PIN1 could reverse the effect of miR-150-5p on the proliferation and invasion of HEp-2 cells. CONCLUSION: In a nutshell, there is a targeted relationship between PIN1 and miR-150-5p. Besides, miR-150-5p can inhibit the proliferation and invasion of HEp-2 cells by regulating the expression of PIN1.


Asunto(s)
Neoplasias Laríngeas , Laringe , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patología , Laringe/patología , Regulación Neoplásica de la Expresión Génica , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo
15.
Semin Cancer Biol ; 91: 143-157, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871635

RESUMEN

Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) is a member of a family of peptidyl-prolyl isomerases that specifically recognizes and binds phosphoproteins, catalyzing the rapid cis-trans isomerization of phosphorylated serine/threonine-proline motifs, which leads to changes in the structures and activities of the targeted proteins. Through this complex mechanism, PIN1 regulates many hallmarks of cancer including cell autonomous metabolism and the crosstalk with the cellular microenvironment. Many studies showed that PIN1 is largely overexpressed in cancer turning on a set of oncogenes and abrogating the function of tumor suppressor genes. Among these targets, recent evidence demonstrated that PIN1 is involved in lipid and glucose metabolism and accordingly, in the Warburg effect, a characteristic of tumor cells. As an orchestra master, PIN1 finely tunes the signaling pathways allowing cancer cells to adapt and take advantage from a poorly organized tumor microenvironment. In this review, we highlight the trilogy among PIN1, the tumor microenvironment and the metabolic program rewiring.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Transducción de Señal , Fosforilación
16.
Front Immunol ; 14: 1126464, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969236

RESUMEN

Protein kinase C-θ (PKCθ) is a member of the novel PKC subfamily known for its selective and predominant expression in T lymphocytes where it regulates essential functions required for T cell activation and proliferation. Our previous studies provided a mechanistic explanation for the recruitment of PKCθ to the center of the immunological synapse (IS) by demonstrating that a proline-rich (PR) motif within the V3 region in the regulatory domain of PKCθ is necessary and sufficient for PKCθ IS localization and function. Herein, we highlight the importance of Thr335-Pro residue in the PR motif, the phosphorylation of which is key in the activation of PKCθ and its subsequent IS localization. We demonstrate that the phospho-Thr335-Pro motif serves as a putative binding site for the peptidyl-prolyl cis-trans isomerase (PPIase), Pin1, an enzyme that specifically recognizes peptide bonds at phospho-Ser/Thr-Pro motifs. Binding assays revealed that mutagenesis of PKCθ-Thr335-to-Ala abolished the ability of PKCθ to interact with Pin1, while Thr335 replacement by a Glu phosphomimetic, restored PKCθ binding to Pin1, suggesting that Pin1-PKCθ association is contingent upon the phosphorylation of the PKCθ-Thr335-Pro motif. Similarly, the Pin1 mutant, R17A, failed to associate with PKCθ, suggesting that the integrity of the Pin1 N-terminal WW domain is a requisite for Pin1-PKCθ interaction. In silico docking studies underpinned the role of critical residues in the Pin1-WW domain and the PKCθ phospho-Thr335-Pro motif, to form a stable interaction between Pin1 and PKCθ. Furthermore, TCR crosslinking in human Jurkat T cells and C57BL/6J mouse-derived splenic T cells promoted a rapid and transient formation of Pin1-PKCθ complexes, which followed a T cell activation-dependent temporal kinetic, suggesting a role for Pin1 in PKCθ-dependent early activation events in TCR-triggered T cells. PPIases that belong to other subfamilies, i.e., cyclophilin A or FK506-binding protein, failed to associate with PKCθ, indicating the specificity of the Pin1-PKCθ association. Fluorescent cell staining and imaging analyses demonstrated that TCR/CD3 triggering promotes the colocalization of PKCθ and Pin1 at the cell membrane. Furthermore, interaction of influenza hemagglutinin peptide (HA307-319)-specific T cells with antigen-fed antigen presenting cells (APCs) led to colocalization of PKCθ and Pin1 at the center of the IS. Together, we point to an uncovered function for the Thr335-Pro motif within the PKCθ-V3 regulatory domain to serve as a priming site for its activation upon phosphorylation and highlight its tenability to serve as a regulatory site for the Pin1 cis-trans isomerase.


Asunto(s)
Péptidos , Isomerasa de Peptidilprolil , Animales , Ratones , Humanos , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Proteína Quinasa C-theta/genética , Ratones Endogámicos C57BL , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Receptores de Antígenos de Linfocitos T , Prolina/química , Prolina/metabolismo
17.
Exp Cell Res ; 425(2): 113544, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906101

RESUMEN

Hepatic stellate cells (HSCs) produce extracellular matrixes (ECMs), such as collagen and fibronectin, in response to stimulation with transforming growth factor ß (TGFß). The massive ECM accumulation in the liver due to HSCs causes fibrosis which eventually leads to hepatic cirrhosis and hepatoma development. However, details of the mechanisms underlying continuous HSC activation are as yet poorly understood. We thus attempted to elucidate the role of Pin1, one of the prolyl isomerases, in the underlying mechanism(s), using the human HSC line LX-2. Treatment with Pin1 siRNAs markedly alleviated the TGFß-induced expressions of ECM components such as collagen 1a1/2, smooth muscle actin and fibronectin at both the mRNA and the protein level. Pin1 inhibitors also decreased the expressions of fibrotic markers. In addition, it was revealed that Pin1 associates with Smad2/3/4, and that four Ser/Thr-Pro motifs in the linker domain of Smad3 are essential for binding with Pin1. Pin1 significantly regulated Smad-binding element transcriptional activity without affecting Smad3 phosphorylations or translocation. Importantly, both Yes-associated protein (YAP) and WW domain-containing transcription regulator (TAZ) also participate in ECM induction, and upregulate Smad3 activity rather than TEA domain transcriptional factor transcriptional activity. Although Smad3 interacts with both TAZ and YAP, Pin1 facilitates the Smad3 association with TAZ, but not that with YAP. In conclusion, Pin1 plays pivotal roles in ECM component productions in HSCs through regulation of the interaction between TAZ and Smad3, and Pin1 inhibitors may have the potential to ameliorate fibrotic diseases.


Asunto(s)
Fibronectinas , Isomerasa de Peptidilprolil , Humanos , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Cirrosis Hepática/patología , Fibrosis , Matriz Extracelular/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo
18.
Cell Death Differ ; 30(4): 1082-1095, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36813923

RESUMEN

The VHL protein (pVHL) functions as a tumor suppressor by regulating the degradation or activation of protein substrates such as HIF1α and Akt. In human cancers harboring wild-type VHL, the aberrant downregulation of pVHL is frequently detected and critically contributes to tumor progression. However, the underlying mechanism by which the stability of pVHL is deregulated in these cancers remains elusive. Here, we identify cyclin-dependent kinase 1 (CDK1) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) as two previously uncharacterized regulators of pVHL in multiple types of human cancers harboring wild-type VHL including triple-negative breast cancer (TNBC). PIN1 and CDK1 cooperatively modulate the protein turnover of pVHL, thereby conferring tumor growth, chemotherapeutic resistance and metastasis both in vitro and in vivo. Mechanistically, CDK1 directly phosphorylates pVHL at Ser80, which primes the recognition of pVHL by PIN1. PIN1 then binds to phosphorylated pVHL and facilitates the recruitment of the E3 ligase WSB1, therefore targeting pVHL for ubiquitination and degradation. Furthermore, the genetic ablation or pharmacological inhibition of CDK1 by RO-3306 and PIN1 by all-trans retinoic acid (ATRA), the standard care for Acute Promyelocytic Leukemia could markedly suppress tumor growth, metastasis and sensitize cancer cells to chemotherapeutic drugs in a pVHL dependent manner. The histological analyses show that PIN1 and CDK1 are highly expressed in TNBC samples, which negatively correlate with the expression of pVHL. Taken together, our findings reveal the previous unrecognized tumor-promoting function of CDK1/PIN1 axis through destabilizing pVHL and provide the preclinical evidence that targeting CDK1/PIN1 is an appealing strategy in the treatment of multiple cancers with wild-type VHL.


Asunto(s)
Proteína Quinasa CDC2 , Neoplasias de la Mama Triple Negativas , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Proteína Quinasa CDC2/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/metabolismo , Tretinoina/farmacología
19.
Am J Med Genet A ; 191(5): 1378-1383, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36718996

RESUMEN

Pre-mRNA splicing factors are crucial in regulating transcript diversity, by removing introns from eukaryotic transcripts, an essential step in gene expression. Splicing of pre-mRNA is catalyzed by spliceosomes. CWC27 is a cyclophilin associated with spliceosome, in which genetic defects of its components have been linked to spliceosomopathies with clinical phenotypes including skeletal developmental defects, retinitis pigmentosa (RP), short stature, skeletal anomalies, and neurological disorders. We report two siblings (male and female) of Mexican descent with a novel homozygous frameshift variant in CWC27 and aim to highlight the cardinal features among the previously described 12 cases as well as expand the currently recognized phenotypic spectrum. Both siblings presented with a range of ocular and extraocular manifestations including novel features such as solitary kidney and tarsal coalition in the male sibling, together with gait abnormalities, and Hashimoto's thyroiditis in the female sibling. Finally, we highlight ectodermal involvement including sparse scalp hair, eyebrows and lashes, pigmentary differences, nail dysplasia, and dental anomalies as a core phenotype associated with the CWC27 spliceosomopathy.


Asunto(s)
Precursores del ARN , Retinitis Pigmentosa , Femenino , Humanos , Masculino , Ciclofilinas/genética , Ciclofilinas/metabolismo , Isomerasa de Peptidilprolil/genética , Retinitis Pigmentosa/genética , Precursores del ARN/genética , Empalme del ARN/genética , Empalmosomas/genética , México/etnología
20.
Mol Biotechnol ; 65(3): 337-349, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35467256

RESUMEN

Parvulins, peptidyl-prolyl isomerase enzymes (PPIase), catalyze the cis-trans isomerization of prolyl bonds in polypeptides, contributing to folding and function regulation of many proteins. Among Parvulins, Par17, exclusively expressed in hominids, is the least examined in terms of structure, catalytic function and cellular activity. Setting the conditions for the preparation of recombinant active Par17 may therefore significantly foster future studies. Here, we comparatively evaluated the impact of several parameters, including host strains, culture media, isopropyl ß-D-1-thiogalactopyranoside concentration, post-induction incubation time and temperature, on the overexpression of Par17 in E. coli cells. A similar approach was also comparatively adopted for the preparation of the recombinant full-length Pin1 protein, the most representative Parvulin, and the catalytic domains of both enzymes. Proteins were efficiently expressed and purified to homogeneity and were subjected to a structural characterization by Size Exclusion Chromatography and Circular Dichroism. Moreover, a single-step homogeneous protease-based fluorimetric assay, potentially scalable in HTS format, has been developed for determining the peptidyl-prolyl cis-trans isomerase activity of recombinant Parvulins. Results obtained show that proteins are folded and active. These new data mark an important milestone for progressing the investigation of Parvulins.


Asunto(s)
Escherichia coli , Peptidil-Prolil Isomerasa cis-trans de Interacción con NIMA 4 , Humanos , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Isomerasa de Peptidilprolil/genética , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Péptidos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...